Independent mechanistic inhibition of cdc25 phosphatases by a natural product caulibugulone.
نویسندگان
چکیده
Caulibugulones are novel but poorly characterized cytotoxic isoquinoline quinones and iminoquinones identified in extracts from the marine bryozoan Caulibugula intermis. We now report that the caulibugulones are selective in vitro inhibitors of the Cdc25 family of cell cycle-controlling protein phosphatases compared with either human vaccinia H1-related phosphatase (VHR) or tyrosine phosphatase 1B (PTP1B). The in vitro inhibition of Cdc25B by caulibugulone A was irreversible and attenuated by reducing agents or catalase, consistent with direct oxidation of the enzyme by reactive oxygen species. Mechanistically, caulibugulone A directly inhibited cellular Cdc25B activity, generated intracellular reactive oxygen species and arrested cells in both G1 and G2/M phases of the cell cycle. Caulibugulone A also caused the selective degradation of Cdc25A protein by a process that was independent of reactive oxygen species production, proteasome activity, and the Chk1 signaling pathway. Instead, caulibugulone A stimulated the phosphorylation and subsequent activation of p38 stress kinase, leading to Cdc25A degradation. Thus, caulibugulone inhibition of cellular Cdc25A and B phosphatases occurred through at least two different mechanisms, leading to pronounced cell cycle arrest.
منابع مشابه
NAD(P)H:quinone oxidoreductase-1-dependent and -independent cytotoxicity of potent quinone Cdc25 phosphatase inhibitors.
Cdc25 dual-specificity phosphatases coordinate cell cycle progression and cellular signaling. Consequently, Cdc25 inhibitors represent potential anticancer agents. We evaluated >10,000 compounds for inhibition of human Cdc25 phosphatases and identified many potent and selective inhibitors, which all contained a quinone. Bioreductive enzymes frequently detoxify or activate quinones. Therefore, w...
متن کاملAntiproliferative effect of natural tetrasulfides in human breast cancer cells is mediated through the inhibition of the cell division cycle 25 phosphatases.
For many years, in vitro and in vivo studies have reported that organosulfur compounds (OSCs), naturally found in Allium vegetables, are able to suppress the proliferation of various tumor cells. In spite of recent advances, the specific molecular mechanisms involved in OSC activity are still unclear. Considering the antiproliferative effects observed in cancer cells, we postulated that OSCs mi...
متن کاملDeregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death.
Aberrant activation of cell cycle proteins is believed to play a critical role in Alzheimer's disease (AD) pathogenesis; although, the molecular mechanisms leading to their activation in diseased neurons remain elusive. The goal of this study was to investigate the mechanistic link between Cdk5 deregulation and cell cycle re-activation in β-amyloid(1-42) (Aβ(1-42))-induced neurotoxicity. Using ...
متن کاملPharmacologic inhibition of CDC25 phosphatases impairs interphase microtubule dynamics and mitotic spindle assembly.
The CDC25 cell cycle regulators are promising targets for new pharmacologic approaches in cancer therapy. Inhibitory compounds such as BN82685 have proven to be effective in specifically targeting CDC25 in cultured cells and in inhibiting tumor cell growth. Here, we report that BN82685 impairs microtubule dynamic instability and alters microtubule organization and assembly at the centrosome in ...
متن کاملCDC25 Inhibition in Acute Myeloid Leukemia-A Study of Patient Heterogeneity and the Effects of Different Inhibitors.
Cell division cycle 25 (CDC25) protein phosphatases regulate cell cycle progression through the activation of cyclin-dependent kinases (CDKs), but they are also involved in chromatin modulation and transcriptional regulation. CDC25 inhibition is regarded as a possible therapeutic strategy for the treatment of human malignancies, including acute myeloid leukemia (AML). We investigated the in vit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 71 1 شماره
صفحات -
تاریخ انتشار 2007